Solving Complex Problems **Overarching Student Learning Goals** Resources/Tasks to support your child at home. In this unit, your child will work to build an understanding of the following: Solve multi-step problems involving all four operations Florida Student Tutorials: Field Trip Frenzy: ٠ Students use their experiences with addition, subtraction, multiplication, and/or Part 1 - https://bit.ly/2IdmlZI division to solve multi-step problems • Part 2 - https://bit.ly/2G5JIGs • Part 3 - https://bit.ly/2U9rx25 Example: • • The fourth and fifth grades are going on a field trip to the Holiday Show at Part 4 - https://bit.ly/2Kpa0TT the War Memorial Opera House. There are 240 students, 8 teachers Khan Academy: Represent Multi-Step Word and 14 parents riding on school buses to the show. The school ordered 6 Problems Using Equation - https://bit.ly/2GgViJB buses to take everyone to the show. How many people will need to go on each bus if they are divided up equally? Show how you know. Khan Academy: Solving Multi-Step Word Problems -• • When the 6 buses arrive, they find out that only 40 people fit on each bus. https://bit.ly/2X4Paeb The rest will have to go the Holiday Show in cars. If each car holds 4 passengers, how many cars will they need? Show how you know. Interpret a remainder (in problems involving division w/ remainders) Khan Academy: Intro to Remainders -• • A remainder is the part left over after two numbers have been divided if they https://bit.ly/2IoY6qt don't divide evenly. Students need to think about what a question is asking Khan Academy: Understanding Remainders before they decide what a remainder might mean. Here are some examples that https://bit.ly/2VBY6r0 show how important the context is, with each situation involving 60 divided by 40. $60 \div 40 = 1$ with 20 left over. What happens to the 20 that are left? Khan Academy: Interpreting Remainders -٠ https://bit.ly/2KtNvgG Examples: • • The after school soccer team is taking a bus to their game. Each bus seats

40 students, and 60 students will attend. How many buses are needed?
The after school soccer team has t-shirts with the school logo. There are 40 students sharing 60 t-shirts. How many t-shirts will each student get?
After the game, the players eat a snack. There are 60 apples for the 40

players. How many apples will each player get?

Grade 4

xtend and describe number and shape patterns	LearnZillion: Find the Rule for a Function Machine
Patterns that grow in a predictable way over a number of steps are called growth patterns . We could say that each new figure in this pattern has one additional square on each arm, or that each new figure has four more squares in all. We could also use math terminology to describe the growth using words like "plus $ \frac{1}{2} \frac{1}{2} \frac{5}{2} \frac{1}{3} $	 using a Table - <u>https://bit.ly/2HzGOb7</u> Khan Academy: Math Patterns with Tables - <u>https://bit.ly/2VBy8nx</u> Khan Academy: Math Patterns with Toothpicks - <u>https://bit.ly/2P6z8xC</u>
A function is a special relationship between pairs of numbers. A number machine is a way to introduce rules that converts the starting number, or input, into the resulting number, or output. We can see that each output here is twice as great as the input, so we can say that here is "multiply by two." RULE RULE OUTPUT RULE 0 RULE	
Jse comparative relational thinking with equations Comparative relational thinking calls for students to analyze the relationship of values on both sides of the equal sign, rather than using an operation to solve for the exact value For example: Is the equation $3 + 5 = 4 + 6$ true? <i>Without solving, I know it cannot be true because 4 is greater than 3 and 6 is greater than 5 so the value on the right must be greater than the value on the left.</i> Students apply this thinking to determine the value of an unknown as well. Ex: 12 + 18 = 20 + <i>n</i> , what is the value of <i>n</i> ? There are multiple ways to solve this, but a student may think "If I take the 2 from 12, and 18 plus 2 more is equal to 20, then I know there is still 10 more left from the 12. So <i>n</i> must be worth 10.	 Comparative Relational Thinking PowerPoints: Addition - <u>https://bit.ly/2P1imje</u> Subtraction - <u>https://bit.ly/2Kr298B</u> Multiplication - <u>https://bit.ly/2D71H9b</u>