### MA.5.FR.2.2

Overarching Standard: MA.5.FR.2 Perform operations with fractions.

Benchmark of Focus

MA.5.FR.2.2 Extend previous understanding of multiplication to multiply a fraction by a fraction, including mixed numbers and fractions greater than 1, with procedural reliability.

**Benchmark Clarifications** 

*Clarification 1:* Instruction includes the use of manipulatives, drawings, or the properties of operations.

Clarification 2: Denominators limited to whole numbers up to 20.

Related Benchmark/Horizontal Alignment

- MA.5.NSO.2.1/2.4
- MA.5.AR.1.2
- MA.5.GR.2.1

Vertical Alignment

Previous Benchmarks

• MA.4.FR.2.4

Next Benchmarks

• MA.6.NSO.2.2

Purpose and Instructional Strategies

The purpose of this benchmark is for students to learn strategies to multiply two fractions. This continues the work from Grade 4 where students multiplied a whole number times a fraction and a fraction times a whole number (MA.4.FR.2.4). Procedural fluency will be achieved in Grade 6 (MA.6.NSO.2.2).

- During instruction, students are expected to multiply fractions including proper fractions, improper fractions (fractions greater than 1), and mixed numbers efficiently and accurately.
- Visual fraction models (area models, tape diagrams, number lines) should be used andcreated by students during their work with this benchmark (MTR.2.1). Visual fractionmodels should show how a fraction is partitioned into parts that are the same as the product of the denominators.

$$1 + \frac{1}{3}$$

$$1 \frac{1}{2} \times 1 \frac{1}{3}$$

$$1 \frac{1}{2} \times 1 \frac{1}{3}$$

$$1 \frac{1 \times 1}{1} = \frac{1 \times \frac{1}{3}}{1}$$

$$+ \frac{1}{2} \frac{1 \times \frac{1}{2}}{1 \times \frac{1}{2}} = \frac{1}{2} \frac{1}{6} - \frac{1}{2} \times \frac{1}{3}$$

• When exploring an algorithm to multiply fractions  $\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$  make connections to an accompanying area model. This will help students understand the algorithm conceptually

and use it more accurately.

• Instruction includes students using equivalent fractions to simplify answers; however, putting answers in simplest form is not a priority.

**Common Misconceptions or Errors** 

- Students may believe that multiplication always results in a larger number. Using models when multiplying with fractions will enable students to generalize about multiplication algorithms that are based on conceptual understanding (MTR.5.1).
- Students can have difficulty with word problems when determining which operation to use, and the stress of working with fractions makes this happen more often.
  - For example, the multi-step problem, "Mark has  $\frac{3}{4}$  yards of rope and he gives a third of the rope to a friend. How much rope does Mark have left?" expects students to first find  $\frac{1}{3}$  of  $\frac{3}{4}$  or multiply  $\frac{1}{3} \times \frac{3}{4}$  and then to find the difference to find how much Mark has left. On the other hand, "Mark has  $\frac{3}{4}$  yards of rope and gives  $\frac{1}{3}$  yard of rope to a friend. How much rope does Mark have left?" only requires finding the difference  $\frac{3}{4} \frac{1}{3}$ .

Questions to ask students:

How can you relate what you know about equal groups to model  $\frac{2}{3} \times \frac{6}{9}$ ?

• I can represent  $\frac{6}{8}$  using six eighth fraction strips.

I see that I can partition the six eighths into three equal groups to represent the thirds. If I look at two of those groups of thirds, there are two eighths in both those groups, for

four eighths. So,  $\frac{2}{3} \times \frac{6}{8} = \frac{4}{8}$ .

# Find the product of $\frac{4}{5}$ and $\frac{3}{4}$ .

• Sample answer that indicates understanding... *I know my product will be less than either factor because I am taking a part of a fraction. I can draw an area model to prove my thinking. I draw a rectangle and first decompose it into fourths and shade three of those fourths. I then decompose the fourths into fifths which changes my model into twentieths. The overlap of four fifths and three fourths represents my product which is \frac{12}{20}.* 



## Find the product of $2\frac{1}{3}$ and $3\frac{1}{4}$ .

 Sample answer that indicates understanding... I know that multiplication can be related to area so just like I did with whole numbers I can create an area model with these factors and decompose them into wholes and fractions and determine the partial products. I then add the partial products to get the total product which is 7 <sup>3</sup>/<sub>12</sub>.

|               | 2                            | $\frac{1}{3}$  |  |
|---------------|------------------------------|----------------|--|
| 3             | 6                            | 1              |  |
| $\frac{1}{4}$ | $\frac{1}{2} = \frac{2}{12}$ | $\frac{1}{12}$ |  |

#### Instructional Tasks

#### Instructional Task 1

Maritza has  $4\frac{1}{2}$  cups of cream cheese. She uses  $\frac{3}{4}$  of the cream cheese for a banana pudding recipe. After she uses it for the recipe, how much cream cheese will Maritza have left?

#### Instructional Items

```
Instructional Item 1

What is the product of \frac{1}{5} \times 6\frac{1}{2}?

a. \frac{6}{10}

b. \frac{12}{5}

c. 6\frac{7}{10}

d. 1\frac{3}{10}
```

Achievement Level Descriptors:

| Bench                                                                                                                                                                                                                                             | nmark                                                                                                                                                               | Context      | Assessment Limits |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|
| MA.5.FR.2.2 Extend prev<br>multiplication to multi<br>fraction, including mix<br>fractions greater than 1<br>reliability.<br>Clarification 1: Instruction<br>manipulatives, drawin<br>operations.<br>Clarification 2: Denomin<br>numbers up to 20 | ious understanding of<br>ply a fraction by a<br>red numbers and<br>, with procedural<br>on includes the use of<br>gs or the properties of<br>ators limited to whole | Mathematical |                   |
| ALD 2                                                                                                                                                                                                                                             | ALD 3                                                                                                                                                               | ALD 4        | ALD 5             |

| Multiplies two<br>fractions less than a<br>whole by using models<br>and various strategies. | Multiplies a fraction,<br>including fractions<br>greater than one, by a<br>fraction less than a<br>whole. | Extends previous<br>understanding of<br>multiplication to<br>multiply a fraction by a<br>fraction, including<br>mixed numbers and<br>fractions greater than<br>one, with procedural | Identifies an error and<br>multiplies a fraction by<br>a fraction, including<br>mixed numbers and<br>fractions greater than<br>one. |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                             |                                                                                                           | reliability.                                                                                                                                                                        |                                                                                                                                     |

Additional Resources:

<u>CPALMS</u>

Khan Academy Multiplying a fraction by a fraction

<u>Multiplying a mixed number by a mixed number</u>

Resources/Tasks to Support Your Child at Home:

**Multiplication of Fractions Game**