MA.2.AR.2.1

Overarching Standard: MA.2.AR. 2 Demonstrate an understanding of equality and addition and subtraction.

Benchmark of Focus

MA.2.AR.2.1: Determine and explain whether equations involving addition and subtraction are true or false.

Example: The equation $27+13=26+14$ can be determined to be true because 26 is one less than 27 and 14 is one more than 13.

Benchmark Clarifications

Clarification 1:Instruction focuses on understanding of the equal sign.
Clarification 2:Problem types are limited to an equation with three or four terms. The sum or difference can be on either side of the equal sign.
Clarification 3: Addition and subtraction are limited to sums up to 100 and related differences.

Related Benchmark/Horizontal Alignment

MA.2.AR.1.1

Vertical Alignment

Previous Benchmarks Next Benchmarks
MA.1.AR.2.2
MA.3.AR.2.2

Terms from the K-12 Glossary

- Equal sign
- Equation

Purpose and Instructional Strategies

The purpose of this benchmark is to further develop an understanding of the equal sign by examining equations. In grade 1 , students determined and explained whether equations involving addition and subtraction within 20 were true or false.

- Instruction includes the use of manipulatives or drawings to show balanced equations.
- Instruction includes equations where the minuend, subtrahend or addends are on either side of the equal sign.
- Instruction includes equations in different forms such as $a+b=c$ or $c=a+b$.
- Instruction includes examples of equations that are false.

Common Misconceptions or Errors

- Students may not understand the equal sign means "the same as" and only relate it to "the answer is."
- Students may think the equal sign requires them to do something.

Strategies to Support Tiered Instruction

- Teacher provides opportunities to use a number balance to support understanding of the equal sign.
- For example, students build the expression $5+6$ on one side of the balance and are asked to build an expression of equal magnitude of the other side. Students may choose to use a 9 and a 2 , an 8 and a 3 , or a 7 and a 4 . Since students cannot use an 11 and must use two separate numbers instead, they are dispelling the misconception that the equal sign means "the answer is."

- Teacher provides examples of simple equations with no operations to determine if they are true or false using a number balance. Focus should be on the equality of an equation that only contains the equal sign. Students may draw a picture to show the quantities are equal.
- For example, the equation $5=5$ can be modeled using the number balance below.

- Teacher provides manipulatives to model each side of the equation to determine if an equation is true or false.
- For example, for the equation $8+6=10+5$ students would use two-color counters to build each side of the equation and then count to determine if they are equal.

8
6
$=$
10
5
- Teacher provides opportunities to use a balance to explore simple equations that only contain an equal sign.
- For example, students use cubes to represent the equation on the balance using the equations $5=5,8=8$, and $3=3$.

Questions to ask students:

- What does the equal sign in your equation mean?
- Sample answer that indicates understanding: "The equal sign means 'is the same as'."
- Ask: How can you prove that $26+15=27+14$ is a balanced equation?
- Sample answer that indicates understanding: This equation is balanced or the same on both sides. I know this because $26+15$ equals 41 and $27+14$ equals 41 . They both equal the same so the equation is balanced.
- Ask: Which of these equations are true? Explain your thinking. $14+38=49$ or $59=35+24$
- Sample answer that indicates understanding: 59 = 35+24 is true because I can draw a model and show that $35+24$ equal 59 or I can start at 35 and count up 24 which makes 59. $14+38$ is false because 38 and 14 more equals 52 .

Instructional Tasks

Instructional Task 1 (MTR.6.1)

Provide students the table below. Ask students to determine and explain how they know that each equation is true or false.

Equation	True/False	Explanation
$21+38=35+24$		
$87-35=80-29$		
$37+39=32+44$		
$30+43=26+47$		

Instructional Items

Instructional Item 1

Which of the following explains why $15+18=25+8$ is a true equation?
a. The equation $15+18=25+8$ is true because 15 is ten less than 25 and 18 is ten more than 8.
b. The equation $15+18=25+8$ is true because both equations are adding 8 ones.
c. The equation $15+18=25+8$ is true because both equations have a number that has a 5 in the ones place.

Additional Resources:
CPALMS Resources

Video: Khan Academy - Equal Sign

Resources/Tasks to Support Your Child at Home:

Addition Scale - http://www.toytheater.com/addition-scale.php- This interactive game has students completing equations to make the statement true.

Task: Choose a target number less than 20. Use playing cards to find as many possible combinations of cards to reach the target number.

Task: Write a variety of true and false addition and subtraction equations. Work together to sort them into the correct true or false pile.

Is the equation true or false? - http://i4c.xyz/qx3c38l - In this interactive ten-question quiz, players must decide if the given equation is true or false. Extend the game by rewriting the false equations to make them true.

