MA.3.AR.3.2

Overarching Standard: MA.3.AR. 3 Identify numerical patterns, including multiplicative patterns

Benchmark of Focus

MA.3.AR.3.2: Determine whether a whole number from 1 to 144 is a multiple of a given one-digit number.

Benchmark Clarifications:

Clarification 1:Instruction includes determining if a number is a multiple of a given number by using multiplication or division.

Related Benchmark/Horizontal Alignment

- MA.3.NSO.2.2/2.4

Vertical Alignment

Previous Benchmarks

MA.2.AR.3.2

Next Benchmarks
MA.4.NSO.2.1
MA.4.AR.3.1

Purpose and Instructional Strategies

The purpose of this benchmark is for students to determine whether a whole number is a multipleof a given one-digit number (e.g., Is 45 a multiple of 5?). Understanding of multiples extends what students learned in Grade 2 about skip-counting (e.g., skip-counting by 2 s results in multiples of 2). Building a strong foundational understanding of multiples prepares students for relating multiples and factors to prime and composite numbers in Grade 4 (MA.4.AR.3.1).

- Understanding of multiples extends from multiplication by expecting students to understand that the products of the given one-digit number and other factors create multiples of that one-digit number. For example, the products of $5 \times 1,5 \times 2,5 x 3, \ldots$ are multiples of $5(5,10,15, \ldots)$. Understanding of multiples extends from division by expected students to understand if a given whole number from 1 to 144 is divisible by a given-onedigit number, then that dividend is a multiple of it (e.g., 45 is divisible by 5 , so 45 is a multiple of 5) (MTR.5.1)
- The focus of instruction should be on the vocabulary of multiples as it relates to multiplication and division. Students should first have a strong understanding of how multiplication and division work before developing their knowledge of multiples. Instruction can include real-world applications (e.g., Can 45 cookies be placed into 5 bags with an equal number in each bag?) (MTR.4.1, MTR.5.1).

Common Misconceptions or Errors

- When listing multiples of numbers, students may not list the number itself. It is importantto emphasize that the smallest multiple is the number itself. Having students write multiples of a number by consecutive factors beginning with one.

Strategies to Support Tiered Instruction

- Instruction includes opportunities to write multiples of a number by consecutive factors beginning with the factor 1 .
- Instruction includes opportunities to connect finding multiples to skip counting.
- For example, to find the multiples of 8 , students can generate lists of multiples beginning with 1×8. Their generated list should include each of the counting numbers through 12×8. Students model generating multiples with counters. The teacher asks students to make one group of 8 , having them record how many counters there are in an equation ($1 \times 8=8$). Next, students add another group of 8 , recording the number of counters in an equation $(2 \times 8=16)$. Students add more groups of 8 while recording the number of counters they have in an equation. Students should make all multiples of 8 through $12 \times 8=96$. When students have created their multiples, they record the products in a horizontal list in order from 1 $\times 8=8$ to $12 \times 8=96$ and explain the connection between the products in their equations and the multiples in their list.

Multiples of $8: 8,16,24,32,40,48,56,64,72,80,88,96$

Questions to ask students:

- Ask: What is a multiple?
- Sample answer that indicates understanding: A multiple of a given number is the number itself multiplied by another factor. The multiple is the product.
- Ask: What are the first 3 multiples of 4 ? How do you know?
- Sample answer that indicates understanding: The first 3 multiples of 4 are 4, 8, and 12. The first multiple is the product of $1 \times 4=4$, the second multiple is the product of $2 \times 4=8$, and the third multiple is the product of $3 \times 4=12$.
- Ask: Is 20 a multiple of 5 ? How do you know?
- Sample answer that indicates understanding: I know 20 is a multiple of 5 because if I multiply 5 by 4 it has a product of 20 .

Instructional Tasks

Instructional Task 1

Use a visual model or write an equation to show whether 27 is a multiple of 3. Instructional Task 2

Use a visual model or write an equation to show whether 36 is a multiple of 8 .

Instructional Items

Instructional Item 1

Select all the numbers below that are multiples of 8 .
a. 28
b. 56
c. 18
d. 24
e. 30

Achievement Level Descriptors

Benchmark	Context	Assessment Limits	
MA.3.AR.3.2 Determine whether a whole number from 1 to 144 is a multiple of a given one-digit number.			
Clarification 1: Instruction includes determining if a number is a multiple of a given number by using multiplication or division	Mathematical	N/A	
ALD 2	ALD 3	ALD 4	ALD 5
determines whether a whole number in the range of 1 to 100 is a multiple of a given one-digit number, given visual representations.	determines whether a whole number in the range of 1 to 100 is a multiple of a given one-digit number.	determines whether a whole number from 1 to 144 is a multiple of a given one-digit number	N/A

Additional Resources:

CPALMS Resources
Identifying Multiples (Khan Academy Video)
More About Multiples

Resources/Tasks to Support Your Child at Home:

- Choose a number from 1-10 and have your child skip count by that given number to determine the multiples. Could use a 120 s chart or a number line to practice. Then have your child record the multiplication equations and a list of those multiples.
- Ninja Multiples - This game allows students to practice identifying multiples of a given number.
- Play Quick Draw Multiples to determine which numbers are multiples of given numbers.

